Functional Properties of Dendritic Gap Junctions in Cerebellar Golgi Cells
نویسندگان
چکیده
The strength and variability of electrical synaptic connections between GABAergic interneurons are key determinants of spike synchrony within neuronal networks. However, little is known about how electrical coupling strength is determined due to the inaccessibility of gap junctions on the dendritic tree. We investigated the properties of gap junctions in cerebellar interneurons by combining paired somato-somatic and somato-dendritic recordings, anatomical reconstructions, immunohistochemistry, electron microscopy, and modeling. By fitting detailed compartmental models of Golgi cells to their somato-dendritic voltage responses, we determined their passive electrical properties and the mean gap junction conductance (0.9 nS). Connexin36 immunofluorescence and freeze-fracture replica immunogold labeling revealed a large variability in gap junction size and that only 18% of the 340 channels are open in each plaque. Our results establish that the number of gap junctions per connection is the main determinant of both the strength and variability in electrical coupling between Golgi cells.
منابع مشابه
Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations
BACKGROUND Previous one-dimensional network modeling of the cerebellar granular layer has been successfully linked with a range of cerebellar cortex oscillations observed in vivo. However, the recent discovery of gap junctions between Golgi cells (GoCs), which may cause oscillations by themselves, has raised the question of how gap-junction coupling affects GoC and granular-layer oscillations. ...
متن کاملGap junctions compensate for sublinear dendritic integration in an inhibitory network.
Electrically coupled inhibitory interneurons dynamically control network excitability, yet little is known about how chemical and electrical synapses regulate their activity. Using two-photon glutamate uncaging and dendritic patch-clamp recordings, we found that the dendrites of cerebellar Golgi interneurons acted as passive cables. They conferred distance-dependent sublinear synaptic integrati...
متن کاملIdentification of an Inhibitory Circuit that Regulates Cerebellar Golgi Cell Activity
Here we provide evidence that revises the inhibitory circuit diagram of the cerebellar cortex. It was previously thought that Golgi cells, interneurons that are the sole source of inhibition onto granule cells, were exclusively coupled via gap junctions. Moreover, Golgi cells were believed to receive GABAergic inhibition from molecular layer interneurons (MLIs). Here we challenge these views by...
متن کاملUpregulation of Connexins 30 and 32 Gap Junctions in Rat Hippocampus at Transcription Level by Chronic Central Injection of Lipopolysaccharide
Background: Gap junctions composed of connexins (Cx) are functional in cell defense by propagation of toxic/death molecules to neighboring cells. Hippocampus, one of the brain regions with particular vulnerability to damage, has a wide network of gap junctions. Functional response of astrocytic Cx30 and neuronal Cx32 to hippocampal damage is unknown. Methods: We infused lipopolysaccharide (LPS)...
متن کاملAssociation between dendritic lamellar bodies and complex spike synchrony in the olivocerebellar system.
Dendritic lamellar bodies have been reported to be associated with dendrodendritic gap junctions. In the present study we investigated this association at both the morphological and electrophysiological level in the olivocerebellar system. Because cerebellar GABAergic terminals are apposed to olivary dendrites coupled by gap junctions, and because lesions of cerebellar nuclei influence the coup...
متن کامل